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Rarely, in the press of day-to-day scientific 
work, is there a quiet moment to stand back and 
survey our part of the geophysical landscape. 
These quadrennial reviews, it seems to me, are the 
ideal place in which to do so. But too often we 
have had a deadening recitation of details rather 
than a lively forum. I could not write that kind of 
review. Atmospheric radiation is not just a col- 
lection of facts. It is a human enterprise, brim- 
full of the usual conflicts, triumphs, and trage- 
dies found in any enterprise. And it operates in 
a larger context. I feel that it is essential to 
address these aspects, as well as the technical 
ones. What I have attempted therefore, is a 
8nt{•{• e$$ay• expressing my own reasoned opinions 
and making judgements of value. Delicate issues 
are not bypassed, but I have tried to look at them 
fairly and objectively. To those who feel their work 
is not sufficiently showcased, I offer my apolo- 
gies; but I feel we have to attend to certain 
large issues of great import first. 
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Trace Gas Greenhouses 

Trace gas greenhouse effects are one of the two 
theoretical problems (the other being cloud radia- 
tion) that have catapulted radiation scientists on- 
to the center stage of atmospheric science. It be- 
gan with the modern renaissance (it has bad sever- 
al incarnations) of the CO2 problem in the early 
1970' s. That problem bas mushroomed to interna- 
tional proportions. DOE, with shrinking budgets 
in most areas, has a growing budget for CO2 stud- 
ies (Oak Ridge has even established a "Carbon 
Dioxide Information Center"). Further impetus 
came from the CIAP ozone-reduction scare and then 

from Rmmanathan's (1975)discovery of the signifi- 
cant greenhouse effect of Freons. 

The net is now being cast more widely, as it is 
recognized that other trace gases -- N•O, CH4, vo- 
latile organics, and so on -- all have perceptible 
greenhouse effects (e.g., Ramanathan, 1980• Lacis 
et. al., 1981). Furthermore, many of these gases 
are increasing right along with CO• it is esti- 
mated that, until the year 2000, their combined 
greenhouse effects will pace tbat of CO• (WMO, 
1982). This is because, being optically thin, 
their radiative effect increases linearly in their 
concentration, while that of CO•, being optically 
thick, increases only logarithmically. And they 
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often have much larger cross-sections per molecule 
than C02 (especially the Freons). 

The trace gas problem has helped us to forge 
many interdisciplinary connections, wherein, I 
believe, lies the future of our field. The big 
GCM's are turning more anJ more to examinations 
of the effect of C02 radiative forcing on dynam- 
ics, energy transfer, precipitation, and even 
ocean circulation (Manabe/Stouffer, 1980; Hansen 
et. al., 1981). Atmospheric chemistry and stra- 
tospheric dynamics have become heavily involved, 
and now radiative-dynamical-photochemical models 
of the stratosphere are being built (e.g., Fels 
et. al., 1980• Callis et. al., 1983). The CO• 
problem has become such a central focus of atmos- 
pheric science that many formerly independent 
sheikdoms like air-sea exchange and polar science 
are being drawn into its orbit. This, I think, 
is a salutary development. It is giving us a un- 
ified view of atmospheric science, the way satel- 
lites gave us a unified view of the Earth. 

Radiative-convective models (reviewed by Raman- 
athan/Coakley, 1978) have played a decisive role 
in greenhouse (and many other) studies. These 
models are truly one of our field's greatest 
success stories. They have moved out of the hands 
of the original •xperts (Ramanathan, 1976) and are 
now used widely (e.g. Hummel, 1982• Chylek/kiehl, 
1981). They tell us that the m•,•o•, trace gases -- 
H•O, CO•, and 03 in order of importance--con- 
tribute about 30 K to the global average surface 
temperature. Minor trace gases contribute another 
2 K or so. The longwave and shortwave effects of 
stratospheric O• change on surface temperature 
roughly cancel, but the two effects work in the 
same direction for tropospheric Os, which, be- 
cause of pressure-broadening, is as important as 
stratospheric Oz. (Ramanathan and Dickinson, 
1979, give a particularly thorough treatment of 
the 03 question and introduce the intriguing 
Fixed Dynamical Heating concept). Stratospheric 
water vapor, which exerts a dramatic effect on 
surface temperature, may not be as rock-steady as 
we have imagined' in fact, it may slowly rise if, 
as many believe, it is controlled by the tempera- 
ture of the tropical tropopause. 

The importance of looking at greenhouse pertur- 
bations at the triopause, rather than at the sur- 
face, is still not fully grasped by everyone. New- 
ell anj Dopplick (1979) created a flap by back- 

on line wings. Carlon (1981) has kept the dimer 
explanation alive, however, arguing that the low 
concentrations deduced for dimers do not account 

for the match-making role of ions in the atmos- 
phere. 

Kaplan emphasized at a meeting in 1980 that the 
H•O continuum in the 15-micron band of C02 mutes 
the CO• greenhouse effect. In 1981, not knowing 
of Kaplan's work, I discovered a factor of 10 dif- 
ference between my own and Ramanathan et. al. 's 
(1979) calculations of tropical surface radiation 
sensitivity to CO• doubling. It turned out that I 
automatically had the continuum in the 15-micron 
region, by virtue of using LOWTRAN, whereas 
Ramanathan did not. Subsequent in-depth re-ex- 
amination of the problem by Kiehl and Ramanathan 
(1982) revealed a much smaller (25%) effect at the 
tropopause than at the surface. T•i• •is an example 
of the surprises that may still await us in seem- 
ingly well-tilled ground like clear-sky IR models. 

A more intense trace-gas greenhouse on early 
Earth also seems the best resolution of the 
'faint early Sun paradox' (e.g. Kuhn/Atreya, 1979.; 
Owen et. al., 1979), although it seems rather mir- 
aculous that these gases would go away at the 
right rate to keep the Earth from overheating and 
destroying all life. It is also hard to imagine 
any other than a greenhouse explanation for the 
presence of liquid water on early Mars (Cess et. 
al., 1980; Hoffert et. al, 1981). 

The activity in the area of spectroscopy and 
remote sensing of trace gases is intense (e.g. 
Goldman et. al., 1983; Menzies et al., 1981). It 
now seems possible to monitor these species with 
high accuracy, even remotely. Experimentally, we 
have an embarrassment of riches. 

The significant remaining problems in the trace 
gas area seem less purely radiative -- although 
for many of the more exotic minor trace gases, 
line parameters aDJ often even band strengths re- 
main unknown -- than interdisciplinary, involving 
chemistry and dynamics. Many non-greenhousing 
trace gases can chemically alter concentrations of 
absorbing species -- e.g., CO can oxidize (in the 
presence of NO) to form tropospheric 03. And 
trace gases can feed back on each other through 
dynamics-- e.g., when CO• warming of the tropi- 
cal tropopause increases concentrations of stra- 
t ospher ic H• O. 

For review articles, WMO (1982) gives an ex- 
sliding to a pure surface radiation point of view, cellent bird's-eye view• Logan et. al. (1981) looks 
which has been refuted at some length in a very in- at chemistry; and Bach (1976) relates pollution to 

climatic change. teresting paper by Ramanathan (1981). However, an 
important caveat is that, on a regional basis, 
tropopause radiative forcing may not be felt at the 
surface if (a) direct radiative connection is 
blocked (for instance by clouds or the H20 contin- 
uum), and (b) transport is vigorous enough to move 
the heat out before it can be convectively commu- 
nicated to the surface. This is exactly what hap- 
pens in the tropics, according to the new TEC model 
of climate (Hoffert et. al., 1983). 

The cause of the H•O continuum remains contro- 

The "McClatchey Tape" and LOWTRAN 

One of the most important chapters in atmospher- 
ic radiation history was written during the last de- 
cade by McClatchey and his colleagues at AFGL. They 
entered a fragmented field --molecular spectros- 
copy -- and left it in such order that we now take 
for granted getting the latest line parameter tape 
or the latest version of LOWTRAN or FASCODE from 

versial. At a conference of experts on water vapor the National Climatic Center. 
(Deepak et. al. 1979), many rejected the dimer ex- Things were not always so easy. During the 
planation on the grounds that concentrations were 1950's, Kaplan and Plass did not even include water 
too small. They preferred the wings-of-strong- vapor absorption in their studies of the IR effect 
lines explanation, and in fact LOWTR;2• and FASCODE of CO• changes. Much of the data was suspect, 
(discussed below) contain a theoretically-derived there were great spectral gaps with no data what- 
continuum from 0 to 20000 inverse cm based entirely soever, and one had to laboriously assemble what 
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data there was from diverse sources. McClatchey 
amJ his group resolved to improve the situation. 
They marshalled all the existing absorption line 
data, from the microwave to the visible, and 
targeted key spectral regions that needed work. 
Then they either did that work themselves, or let 
contracts to do it. And with amazing speed they 
put together the first uniform compilation of the 
important parameters --wavenumber at line center, 
intensity, half-width, ground-state energy, quan- 
tum numbers -- for every line that was relevant 
to the Earth's atmosphere (including those for iso- 
topes). That was 1972. By now (Rothman, 1981), 
they are up to some 159,000 lines. As previous 
line parameters are proven inaccurate by new mea- 
surements, the tape is corrected• and, over the 
years, many new lines have been added as well. 

This means that IR modelers can now generate 
their own band models, with any spectral resolu- 
tion they choose. But if they can live with ei- 
ther 5 or 20 inverse cm spectral intervals, there 
are two more AFGL products of great value -- LOW- 
TRAN5 (Kneizys et. al., 1980) and its 5 inverse cm 
cousin (Robertson et. al., 1981). These give 
transmission and radiance for arbitrary slant 
paths in the atmosphere using a band model of King 
fitted from the line parameter data. Refractive 
geometry, aerosol extinction (Shettle and Fenn, 
1979), and the famous "McClatchey atmospheres" 
are available as options. 

I was one of the earliest users of LOWTRAN 

(LOWTRAN2, then), and. it enabled me to make a uni- 
fied treatment of shortwave and longwave radiation, 
which until then had been regarded as distinct sub- 
jects. Thus I view LOWTR3kN not merely as a great 
convenience, but as an important unifying influ- 
ence in our field. 

For line-by-line calculations of transmission 
and radiation, AFGL has developed FASCODE (Smith 
et. al., 1978; Clough/Kneizys, 1979; Clough et. 
al., 1981). FASCODE, as its name implies, is de- 
signed for speed. By decomposing the line profile 
into four basis functions, it neatly sidesteps an 
old problem -- that narrow lines at high altitudes 
require a ridiculously dense spectral mesh at all 
altitudes. FASCODE convolves any sort of slit 
function with the data, among other features. It 
is the Cadillac of line-by-line models, except for 
its radiance calculation, which uses a very crude 
integration, like that of LOWTRAN. Scott and Che- 
din (1981) have developed a competing model which 
may be faster, if not as versatile, for some 
applicat ions. 

The original line parameter tape included 7 
absorbing species. Partially in response to the 
trace-gas greenhouse problem, this has been sup- 
plemented by a new trace gas tape (Rothman et. al., 
1981) with line parameters for 13 more species -- 
NOx, SO2• C10, OCS, and other gases suspected of 
affecting the ozone layer. The new tape is much 
less complete than its Big Brother, but data for 
it is being generated at a furious pace, as a scan 
of the "trace gas" section of the Bibliography 
will indicate. 

Another great benefit of the AFGL work is the 
provision of a standard against which everyone 
can measure their work. In the past, one could 
only compare against measurements which, for all 
one knew, were as erroneous as one's own. Now 
there is a well-policed, scrupulously maintained, 

and constantly updated data set -- a worthy op- 
ponent against which to pit one' s own measurements 
(Ben-Shalom et. al., 1980, 1981; Flaud, et. al., 
1980; Skinner/Nordstrom, 1976). By this process, 
the AFGL products are continually improved, to 
the benefit of us all. 

Cloud Rad iat ion 

Cloud radiation leapt to prominence in the early 
1970's when GARP planning documents identified it 
as one of a handful of critical issues. This stim- 
ulated a small flood of theoretical studies, as 
well as some new measurements. Theoretical work 
divided into the following general areas: 

© microphysical -- the direct impact of radiation 
on droplet growth 

© macrophysical -- calculate optical properties 
(albedo, etc .) given the microphysics 

© plane-parallel and finite cloud models 
© enhancement of cloud absorptivity 
© spectrally-detailed models with realistic 

atmo spher es 
© parameterizations based on liquid water con- 

tent and sun angle 
© cirrus clouds 

© cloud-climate feedback 

© radiation-dynamics interactions in stratiform 
cloud. 

Cloud physicists remain skeptical of Barkstrom's 
(1978) idea that cloud droplets grow much faster 
near the cloud top as they are exposed to 'the cold 
of space' in the 8-12 micron window. But cloud 
physicists, like dynamicists, have a history of dis- 
missing radiation. That is probably why they have 
difficulty explaining aspects of cirrus and other 
extended cloud forms. I suspect we will see much more 
on radiation-microphysics in the future. 

Most cloud-radiation models are plane-parallel. 
This is the natural milieu in which to test many 

hypotheses about cloud radiation. However, 
there has been an explosion of papers in 3-D (fi- 
nite) clouds, mostly cubical in shape (McKee/Cox, 
1976; Aida, 1977; Wendling, 1977; Davies, 1978; 
Liou/Ou, 1979; Harshvardhan et. al., 1981; Welch/ 
Zdunkowski, 1981; Ellingson, 1982; Bradley, 1982). 
Monte Carlo and 3-D Eddington methods are the pri- 
mary radiative transfer tools used. The earlier 
papers proclaimed loudly that finite clouds had low- 
er albedos than plane-parallel clouds, because of 
leakage out of the cloud sides. This was no great 
surprise. More recent contributions (e.g. Davis 
et. al., 1979) have tried to fiDJ how to normalize 
plane-parallel results to agree with the finite 
cloud results, which seems more productive. Late- 
ly, the emphasis has been on studying cloud-cloud 
interaction and the approach to the plane-parallel 
limit as intercloud gaps narrow. 

The actual or implied denunciation of plane-par- 
allel cloud modeling in some finite cloud papers 
requires comment. First, measurements are the 
acid test of any model; it is not enough that a 
model simply 'looks' better. Perhaps a plane-par~ 
a].lel model taking proper account of vertical in- 
homogeneity will agree better with measurements 
than typical cubic cloud models with their spa- 
tially-invariant liquid water and drop distributions. 
Perhaps weighting plane-parallel albedos by the pro- 
per measure of cloudiness fraction will correctly 
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predict the albedo of patchy cloud fields. But more observers), this problem is worthy of continued 
importantly, our job is not to make our models as effort. 
complicated as nature herself; it is to simplify and The debate continues over whether or not clouds 
idealize, in order to gain understanding. Plane- have a radiative feedback effect on global climate. 
parallel cloud modeling is an entirely acceptable Cess (1976, 1982), using broad-band satellite data, 
way to do this. And, on a practical level, (a) we found the albedo cooling and greenhouse warming can- 
will never know, or want to know, the shape and size celling each other when cloudiness increased. Wether- 
of every single cloud on Earth, and (b) plane-par- ald/Manabe (1980) found essentially the same result 
allel clouds can be modeled with a level of spectral in a GCM with interactively-predicted clouds. On 
and angular detail unreachable in finite cloud models. the other hand, Hartmann/Short (1980) and Ohring/ 
Our job is to learn how to make simple ad3ustments 
to plane-parallel predictions to mimic patchiness, 
not to reject this very valuable modeling approach 
out of hand. 

Observations of broad-band cloud albedo and ab- 

sorption are not very incisive in testing theoreti- 
cal models. Therefore, special emphasis has been 

Clapp (1980) found the albedo effect winning by at 
least 2 to 1, although they used narrow-band satel- 
lite data to make broad-band inferences, for which 
Cess has criticized them. Charlock (1981) and 
Stephens/Webster (1981) incorporated interactive 
clouds into radiative-convective models, finding in 
the first case a negative feedback (compared to pre- 

laid on •. predicting cloud a. bsorptiqn; and here we have scribed clouds) and in the second case such a be- 
Bound significant disagreements. Theory (Twomey, 
1976; Liou, 1976) finds cloud absorptions no higher 
than 20%, as Fritz found in the 1950's. Yet some 
observations have been as high as 40% (Reynolds et. 
al., 1975). Three explanations have been offered: 
leakage out cloud sides, absorbing aerosols, and 
very large drops. Leakage undoubtedly explains the 
largest disagreements with theory (Ackerman/Cox, 

wildering variety of behaviors that no definitive 
conclusion about the sign of the feedback could be 
made. 

Partly in order to pin down cloud-climate feed- 
backs, the International Satellite Cloud Climatology 
Project has been launched. Under its aegis, a new 
surface cloud climatology is being assembled as 
well, by London and Warren. The goal is to obtain 

1981). But Twomey's (1977) conclusion that aerosols cloud fraction and cloud height, and to this end a 
are unimportant may have to be revised in light of competition between a large number of cloud re- 
recent findings of worldwide soot pollution, in com- trieval schemes has been held, with a final scheme 
bination with the Chylek/Srivastava (1973) mixing consisting of the best parts of the best methods 
rule predicting a possible dramatic enhancement in having recently been settled upon. 
the absorption of soot-water mixtures. The Welch/ In the late 1960's, Lilly was forced to put 
Cox (1980) conclusion that very large drops could in- cloud-top radiative cooling into his boundary-layer 
crease absorptivity to over 30% has been muted upon 
using a more realistic drop distribution (Wiscombe 
et. al., 1983) so there probably isn't much mileage 
in this explanation. 

Spectrally-detailed models were developed first 
by myself in the early 1970's (Wiscombe, 1975) and 
later by Dave/Braslau (1975), Twomey (1976), Liou 
(1976), and Stephens (1978a). Gaseous absorption 
within and above the cloud was included, although 

stratus model in order to keep the stratus from dis- 
sipating. This gave instant legitimacy to an idea 
that had been advanced by radiation scientists like 
M•ller as early as 1951. There is now a lively de- 
bate among PBL theorists, for example as to whether 
a vertically distributed radiative cooling rather 
than Lilly' s delta-function is necessary (Deardorff/ 
Bussinger, 1980; Lilly/Schubert, 1980; Randall, 1980). 
Meanwhile, Herman/Goody (1976) have suggested a 

with varying degrees of sophistication, ranging from shortwave greenhouse as the cause of observed lay- 
a grey-gas assumption to exponential fits. These 
models are essential to a proper understanding of 
cloud radiation, since the solar spectrum, Rayleigh 
scattering, ozone absorption, and water liquid and 
vapor absorption all vary dramatically with wave- 
length, making the cavalier spectral averaging 
characterizing earlier work untrustworthy. 

Cirrus clouds were identified as sensitive regu- 
lators of surface temperature in the famous radia- 
tive-convective paper of Manabe and Wetheraid. Spe- 
cial attention has therefore been paid to them, al- 
though it remains difficult to conduct field pro- 
grams at such high altitudes, as has been done by 

ering in Arctic stratus; and Fravalo et. al. (1981) 
have observationally and theoretically demonstrated 
the importance of both shortwave heating and long- 
wave cooling in controlling cloud-top entrainment. 
Webster/Stephens (1980) and Griffith et. al (1980) 
discuss vast areas of long-lived mid- and upper- 
level cloudiness in the tropics, whose longevity 
could only be due to radiative forcing. 

There is now a much more receptive environment 
for radiative-dynamical studies in connection with 
extended cloudiness (although cloud physicists con- 
tinue to ignore this type of cloudiness). It may 
well turn out that neither the formation, nor the 

Griffith et. al.• (1980) and Paltridge/Platt (1981). persist•ence, nor the dissipation of extended clouds 
Platt (1978, 1979, 1981, etc.) has done a number of can be explained without radiation. 
lidar studies as well as making theoretical calcula- Experiments on cloud radiation have been less fre- 
tions. Liou and his students (Roewe/Liou, 1978; quent than model studies. Fortunately, Cox (1976 and 
Freeman/Liou, 1979) continue to make theoretical cal- many others), Herman (1977, 1980), Derr, Ellingson, 
culations of cirrus radiation in both the shortwave Stephens et. a1.(1978) and others have not just 
and longwave regions, as has Stephens (1980a,b). The taken new measurements of cloud radiation, but have 
main impression is of the great variability in cirrus moved us closer and closer to the Complete Radiation 
optical properties: emissivity can range from near Experiment• in which cloud microphysics, temperature, 
zero in sub-visible cirrus to near unity in tropi- humidity, and even aerosol content are measured si- 
cal cirrus, and albedo from near zero to as high as multaneously. They have assembled an impressive col- 
50% or so. Clearly, in view of the recent lection of data which modelers really should have a 
recognition of the ubiquitousness of cirrus (which look at. 
was formerly missed by, or invisible to, ground It would be impossible to discuss all the new da- 
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ta. Let me merely cite subject areas where signi- 
ficant new observations have been obtained: 

ß tropical cloud systems -- in GATE, MONEX, and 
EPOCS (Derr/Gunter, 1982) 

ß cirrus optical properties (discussed above) 
ß Arctic stratus (•erman, 1977, 1980; Wendler et. 

al., 1981; Tsay/Jayaweera, 1983) 
ß South Polar clouds (Smiley et. al., 1980) 
ß cloud particle sizes and shapes from Knollenberg 

probes 
ß re-evaluation of ice refractive index (Warren, 

1983) 
ß complete re-measurement of water refractive in- 

dex (e.õ. Downinõ/Williams, 1975) 
In connection with the last two items, those who 

are still usir• the old Irvine-Pollack compilation, 
thinkinE it makes no difference, would be well-ad- 
vised to reconsider their position. 

The hassles involved in such experiments are hard 
for theoreticians to imaõine. In GATE and MONEX, 
for example, radiation missions were often assiõned 
low priority, or scrubbed altoõether. Observational 
proõrams require immense dedication and are not 
nearly as productive of publications as yet-another- 
multiple-scatterinõ-model. Yet they remain the life 
blood of our field. 

Earth Radiation Budget 

Earth radiation budget, and in particular the 
three-satellite ERBE program scheduled to fly next 
year (Woerner, 1979; Barkstrom/Hall, 1981, 1982; Hall 
1982), is the third great problem which has brought 
atmospheric radiation to prominence. Dave Atlas has 

the intense activity in some of these areas; it is 
simply that much of the work has not yet found its 
way into the journals. 

A particularly important aspect of ERBE is its 
concern for the post-experimental use of the data. 
In the past, it had been assumed that researchers 
outside the tightly-knit satellite community -- for 
example, experts in weather prediction, climate, 
and radiation -- would automatically pick up Earth 
radiation budget data and use it. Things didn't 
work out that way. A few climate theorists used the 
zonally-, annually-averaged data, and still fewer 
used the zonally-, seasonally-averaged data, but 
this did not amount to widespread usage. So ERBE, 
by assembling an international 'Science Team' from 
universities and non-satellite government labora- 
tories, is trying to assure that the data gets used 
to, among other things: improve and/or validate ra- 
diation models and simple radiation parameterizations 
in climate models (e.g. Slingo, 1982); correlate 
radiation budget with observed meteorological varia- 
bles -- in both directions; study diurnal cycles; 
and better understand the role of clouds. This is 

as important as the taking of the data itself. 
In some ways, the ERBE Science Team is a stalk- 

ing horse for the entire atmospheric science commu- 
nity. That community has not made much quantitative 
use of satellite data. By inducting the team members 
into a satellite program from its very inception, 
and letting them have a say in how it is run (through 
Working Groups to which each member is appointed), 
it is hoped that the barriers which have existed may 
be broken down. 

Meanwhile, the Earth radiation budget data from 

called ERBE "the most visible climate-related proj- Nimbus 6 (Smith et. al., 1977; Jacobowitz et.al., 
ect in the world." If one can find the net radiation 1979; Campbell/Vonder Haar, 1980; Bess et. al., 1981) 
at the top of an atmospheric grid box from a combina- and Nimbus 7 (Hickey et. al., 1980) has been and con- 
tion of spacecraft, one immediately has the sum of tinues to be analyzed. The CSU school (Oort/Vonder 
the heat storage in, and the heat transport into and Haar, 1976; Ellis et. al., 1978; Campbell/Vonder Haar 
out of, that grid box. Since the present surface 1980) continues to add to its laurels, culminating 
and upper-air network, already costing about $1 bil- most recently in the fine summation of Stephens et. 
lion, is not likely to grow much, especially in the al. (1981). 
Southern Hemisphere, and since that network only gives Simple narrow-to-broad-band conversion algor- 
reliable estimates of heat transport in part of the ithms (Gruber, 1978; recently improved for the IR 
Northern Hemisphere mid-latitudes, the incentive for by Abel/Gruber, 1979) continue to be applied by 
a successful ERBE experiment is obvious. NOAA-NESS to the operational polar orbiter data 

Therefore every effort is being made to make ERBE to generate radiation budgets (Winston/Gruber, 
a first-class experiment. Many areas which got short 1979). This continues to irritate some climate 
shrift in the past, due to budgetary and other con- 
straints, were singled out for special attention, 
including: 
ß optimal orbit configurations 
ß detailed instrument modeling and error analysis 
ß calibration against international standards, and 

in flight as well 
ß time- and space-averaging procedures (with spe- 

theorists who feel that this type of conversion 
is unwarranted. Nevertheless, after some study 
of the problem, I am convinced that it i__s war- 
ranted; it just needs to be done better, and with 
more channels. The Europeans are already doing it 
(Gube, 1982). Suomi's VAS instrument on GOES, 
with some 18 narrow channels, for example, would 
probably give more than enough information to 

cial emphasis on the diurnal cycle) characterize the entire spectrum. And there are 
ß modeling of the angular variation of the outgoing many other narrow channels on other satellite 

intensities, both empirically and theoreti- systems -- Tiros, Landsat, DMSP -- which could be 
cally 

ß inversion of measurements at satellite altitude 

to ' top-of-atmosphere' 
ß correlative measurements (from the ground, from 

aircraft, and from other spacecraft) 
ß exceptionally thorough scrutiny of the data for 

errors (Hall, 1983) 
ß data archiving procedures (with special empha- 

sis on making the data easily available and 
useable by outsiders). 

The small bibliography does not begin to reflect 

used as well. 

On the subject of narrow bands, Ramanathan 
(1979) raised a lonely voice calling for some 
rsstr•tsd channels (e.g. the CO2 15-micron band) 
as well as broad-band channels on future Earth ra- 

diation budget experiments. I would like to add 
my voice to his. His argument is simply this: the 
climate may change -- for example due to CO2 -- 
without giving any signal in the total longwave 
flux to space. But there will be a signal in re- 
stricted bands. This is most definitely worth 
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looking for, especially since, in the Workshop on 
First Detection of CO2 Effects held last year, 
every surface-based measurement of climate change 
had charges of ambiguity laid against it. 

There are some very positive developments tak- 
ing place in the satellite area, signalled not 
only by ERBE, but by the appearance of more so- 
phisticated theoretical and experimental analyses 
of problems like angular modeling (King/Curran, 
1980; Davis/Cox, 1981; Smith/Green, 1981). 
Equally important, perhaps, is the appearance 
of this work in the journals -- a welcome break 
from satellite tradition. After a decade of 

heavy reliance on empiricism, the new emphasis 
on advanced modeling and mathematical techniques 
is sorely needed. 

Aer o so 1 Rad iat ion 

To many outside our field, there seems an over- 
emphasis on aerosol radiation (the Bibliography con- 
tains some 250 entires in this area!). In truth, 
many within the field have voiced the same opinion. 
The small (< 1%) changes in planetary albedo 
wrought by stratospheric aerosols hardly seemed 
worth the flood of papers on this subject (see 
Cadle/'Grams, 1975; Coakley, 1981). Normal tropos- 
pheric aerosols have larger optical depths; but 
with a washout/rainout time of 1-2 weeks, Bryson's 
Humran Volcano seems unlikely to materialize. And 
one would have to assume fixed cloudiness to assign 
aerosols an unamhiguous role in climatic change, 
except in cloudless regions like the Rajasthan 
Desert in India, studied by Bryson. 

Nevertheless, there are important reasons for 
pursuing aerosol radiation studies. The first is 
that we have had four minutely-examined volcanic 
explosions -- Agung, Fuego, St. Helens, and now 
E1 Chichon -- providing unparalleled opportunities 
for observing short-time-scale climatic change 
caused by reduced insolation to the troposphere 
(e.g. Pollack, 1976; DeLuisi/Herman, 1977; Russell/ 
Hake, 1977; Cess et. al., 1981; Ogren et. al., 
1981; Howard, 1981; Mitchell, 1982). These are 
the only global-scale climate-change experiments 
available to us (Hansen et. al., 1978), except for 
the few-tenths-of-a-percent flickering of the solar 
'constant' and the much longer-term CO2 effect. 
Such events warrant intense concentrations of effort. 

The second reason is that mankind may be adding 
a very insidious and powerful absorber to the natur- 
al tropospheric aerosol-- soot. (Gray (1976) has 
proposed that we do this on purpose, for weather 
modification.) This idea is not new--Weinman 
looked at it in the late i960"s -- but it was only 
recently that the incredible ubiquitousness of soot 
became known. Very few laboratories had been able 
to analyze aerosol samples for soot --mass spectro- 
meters miss it. Those few that did -- especially 
Rosen et. al. (1978) and Charlson -- began finding 

have lacked any aerosol influence in their radiation 
parameteriza. tions, much less any aerosol feedback, 
as for example in altering cloud microphysics. Yet 
even background aerosol effects are larger, in flux 
units, than the perturbations like 2xCO• that have 
been examined. Reck (1976) and Charlock/Sellers 
(1981) have looked at aerosols in the context of 
radiative-convective models, which is the normal 
first step before trying to put them in more com- 
plex models. 

The fourth reason is that aerosol pollution of 
all sorts substantially alters the urban boundary 
layer through radiative-dynamic interactions (e.g. 
Welch/Zd.unkowski, 1976; Venkatram/Viskanta, 1977). 

The Workshop on Light Absorption by Aerosols 
(Hindman/Gerber, 1981)brought experimenters with a 
wide variety of instrumental techniques together 
to measure imaginary refractive index of several 
precisely-•nonitored aerosol types. Errors of 1/2 
an order of magnitude and more were common, and it 
was not clear who was right. This sort of activi- 
ty is of much greater value, at this point, than 
further aerosol-radiation modeling studies. 

Characterization of the size distribution has 

advanced beyond the "Junge Era" (cloud radiation 
is still stuck in the "Deirmendjian C. 1 Era"). It 
is recognized that the highly absorbing particles 
(soot, hematite) are concentrated in a sub-micron 
mode, while the more transparent particles (sili- 
cates and sulfates) are concentrated in a second, 
large-size mode (Lindberg/Gillespie, 1977). Opti- 
cal properties of many common aerosol materials 
have been measured as a function of wavelength 
(see especially the series of papers by Patterson), 
although not with the spectral thoroughness of 
water and ice,which are easier to study because 
perfect plane surfaces can be obtained. Growth of 
hygroscopic aerosols with relative humidity has 
been modeled and measured (Zdunkowski/Liou, 1976). 
All in all, knowledge of aerosols advanced so rap- 
idly that already in 1976 it was possible to param- 
eterize their radiative effects (Toon/Pollack), 
although this has been largely superseded by the re- 
markably comprehensive effort of Shettle/Fenn (1979). 

Pressing problems include mixing rules for the 
average radiative effects of soot/non-soot mixtures 
(the conventional ones don't predict as much ab- 
sorption as is observed -- see Ackerman/Toon, 1981); 
scattering and absorption by non-spherical particles 
(discussed below); and gas-to-particle conversion 
processes, such as apparently generate the Antarc- 
tic and stratospheric aerosols. Another interest- 
ing area is the coupling between radiation and dy- 
namics in dusty situations; this has been conclu- 
sively demonstrated during Martian dust storms 
(Zurek, 1978), and on Earth there have been many 
arguments that dust stabilizes the lapse rate. 

S in8 le S ca tt er in8 

soot everywhere but Antarctica. There is now a pro- Mie theory remains the backbone of our treat- 
gram to study its effect in the Arctic (Shaw/Stamnes, ment of single scattering. New algorithms for ex- 
1980; Rosen et. al., 1981; Porch/MacCracken, 1982; act Mie scattering (Wiscombe, 1980) are enjoying 
Cess, 1983) where it may reach optical depths of 0.2. wide popularity. Some people are even doing single 
And if it is scavenged by falling snow, it can reduce scattering calculations on microcomputers (Barber, 
snow albedo by 10-20% or more (Warren/Wiscombe, 1981)! Even in cases where we know the particles 
1980). An entire conference (Novakov, 1979) has to be nonspherical, Mie theory is still often the 
been held on "Carbonaceous Particles in the Atmos- best approximation. Unless the particles have 
phere." one specific shape, or are preferentially oriented 

The third reason is that global climate models by aerodynamic forces, like ice needles or plates, 
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it is very difficult to take any credible account 
of non-sphericity which improves on Mie theory. 
Pollack and Cuzzi (1980) have proposed a simple 
scheme to adjust the Mie single-scattering albedo 
and asymmetry factor, but the calculations of Mug- 
nai and myself show these adjustments to fail in 
general. Other schemes for modifying Mie theory 
have met with still less success. 

Nevertheless, non-spherical particle scattering 
has become a significant focus of activity. (Liou 
introduced the subject into atmospheric science in 
the early 1970's, by approximating cirrus particles 
as infinite cylinders.) In 1979, Schuerman (1980) 
hosted a meeting on the subject which brought to- 

principle, but I confess to not understanding her 
paper in a quick reading. 

Two techniques have been developed for studying 
single-particle scattering. One is to build micro- 
wave-sized analogues, which was invented in the 
U.S. but languished here while the Europeans (Zer- 
ull, 1976) took the lead. Schuerman et.al (1981) 
revived the U.S. effort, but this has been cut short 
by Schuerman's untimely death. 

The other technique is 'optical levitation' 
(Ashkin/Dziedzic, 1980, 1981; Grehan/Gouesbet,1981). 
Here, the particle is suspended by radiation pres- 
sure in a vertically-pointing laser beam -- no 
strings, wires, or spider webs! Incredibly fine 

gether atmospheric scientists, electrical engineers, details of the scattering process can be monitored 
and experimentalists for the first time. Electri- 
cal angineers had been solving scattering problems 
for a variety of odd shapes since the early 1960's 
(e.g. Uslenghi, 1978; Morgan/Mei, 1979). We have 
adopted the best of their techniques, for example, 
the EBCM method of Waterman as extended by Barber/ 
Yeh (1975). 

A singular triumph was the exact solution of the 

in this technique. 
Mie theory itself continues to be a subject of 

study. 'Complex angular momentum theory' (Nussen- 
zveig,•1979) has finally cracked a problem that 
eluded even Van de Hulst (1981) -- namely, the cor- 
rect large-radius asymptotic formulas, including 
the surface-wave terms. The new formulas are ex- 

cellent approximations and are free of the annoy- 
spheroidal scattering problem (Asano/Yamamoto, 1975; ing 'ripple' that plagues exact Mie calculations. 
Asano/Sato, 1980). The formulas are fiendishly in- By including just 4 or 5 terms in the CAM expansion, 
volved, and apparently run into numerical difficul- accurate results can be obtained down to size par am- 
ties for size parameters greater than 30. But then, eters of 15-20 (Nussenzveig/Wiscombe, 1980). 
so did Mie calculations in the early days. I have Standard 'mixing rules' for calculating the mean 
no doubt these numerical problems will be solved, al- refractive index of a heterogeneous particle have 
though, what with the immense computational expense recently been challenged by Chylek/Srivastavm 
of averaging over orientation, spheroidal calcula- (1983). (Niklasson (1981) and Bohren/Battan (1980, 
tions will never become as widespread as Mie calcu- 1982) have also re-examined mixing rules.) If this 
lations. Probably the first reasonable non-spheri- work is correct, mixtures of soot with non-absorb- 
cal adjustments to Mie theory will come from a care- ing material can be much more absorbing that pre- 
ful study of spheroidal scattering. 

In one way, spheroids are special, however: they 
are convex. This is what led Mugnai and I to study 
wavy-surface particles, with mild concavities. We 
found these concavities to have a striking effect. 
Since many natural aerosol particles have rough 
surfaces (to say nothing of those which are honey- 
combed with voids), it is likely that the qualita- 
tive effects of non-sphericity are not going to be 
entirely revealed by studying the spheroidal case 
alone. In particular, if cavities and voids trap 
radiation, like a black-body cavity in the labora- 
tory, particle absorptivity may be enhanced. 

The other shape for which a new solution has 
been derived is the hexagonal column (Wendling et. 
al., 1979; Coleman/Liou, 1981; Cai/Liou, 1982).With- 
in this solution must lie many of the most interest- 
ing phenomena of meteorological optics, which are 
usually analyzed with simple ray-tracing (Tape, 
1980). However, after looking at the many natur- 
ally-occurring shapes of ice crystals in the atmos- 
phere, I would say tbmt we still have a long way to 

viously thought. 
In 1979, an entire issue of J. Opt. Soc. Amer. 

was devoted to a conference on meteorological op- 
tics. This is a rather curious 'field', populated 
mostly by hobbyists who lave it but earn their keep 
doing other things. I couldn't help wondering how 
some of these optical phenomena might be used for 
remote sensing, but perhaps that would require a 
degree of pattern recognition and color discrimi- 
nation found only in the human eye. Considering 
the expense of mounting field experiments to look 
at ice crystals and water drops in situ, however, 
perhaps it would be worth a try. 

Multiple Scatt. eri. n• 

I must admit tbmt my own early experiences in 
radiative transfer have left me with a somewbmt 

jaundiced view of what does or does not constitute 
an original contribution in this field. In my first 
job, in 1969, I was immediately thrown into a prob- 
lem of time-dependent spherical radiative transfer. 

go in characterizing ice-particle scattering. Well/ A problem in time-dependent 2-D cylindrical radia- 
Chu (1980) have given approximate solutions for ice 
crystal plates which are thin relative to the wave- 
length. Measurements of ice crystal scattering are 
much rarer, because the crystals fall so fast, but 
Sassen has studied the problem in a series of pa- 
pers, and Winchester and Jayaweera have made mea- 
surements which are unpublished at the time of this 
wr it ing. 

Chylek, in a series of papers, has looked for 
simple ways to approximate various features of non- 
spherical scattering without solving Maxwell's 
equations exactly. Whitney (1979) has proceeded in 
somewhat the same vein, invoking an entropy-like 

tive transfer quickly followed. In all this, I 
was tutored by old hands like Burt Freeman, veter- 
ans of Los Alamos and Livermore who had been grap- 
pling with very nasty radiative transfer problems 
for years. Thus, it has been hard for me to watch 
some of my colleagues in atmospheric radiation re- 
inventing the wheel. 

Nevertheless, there are unique aspects of atmos- 
pheric radiation which these people never dealt 
with. First, they used scattering iteration methods 
(like Herman et. al., 1980), which restricted them 
to optical depths less than about 10. They had no- 
thing like adding-doubling. Second, their absorp- 
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tion coefficients varied smoothly with wavelength; 
they did not have to deal with line structure. 
Thirdly, they dealt mostly with isotropic and lin- 
early anisotropic phase functions, not our sharply 
forward-peaked ones. (I directed much of my own 
research into those three areas.) 

The key discoveries of the 1960's were: doubling, 

viding a useful tool to climate modelers and other 
non-experts, who had great need of it. And, on 
the subject of approximation, Ronnholm et. al. (1980) 
have reminded us that when the properties of the 
medium are only known to within a certain error, it 
makes no sense to hone our radiative transfer me- 

thods to a fine edge. 

by Van de Hulst; adding-doubling, by Grant/Hunt; The time has come, it seems to me, to turn our 
and Fourier expansion in azimuth, by Dave. By 1971, attention to other areas than monochromatic, plane- 
both the adding-doubling and spherical harmonics parallel multiple scattering, lest we be accused of 
(Dave, 1975) methods were fairly mature. But spher- beating that problem to death. One such area is the 
ical harmonics exhibited both spurious absorption incorporation of a rough surface like the ocean 
and wild oscillations in the intensity as a function (Plass et. al., 1975, 1976; Fung/Eom, 1981). Another 
of angle. These problems have only been remedied is spherical geometry, for cases where the Sun is 
recently (Karp et. al., 1981). Therefore adding- near the horizon, as in the polar regions (Leung, 
doubling became the method of choice, not only be- 1976; Simmoneau, 1980). Yet another is 2-D (Cros- 
cause of its stable numerical properties, but be- bie/Dougherty, 1981) or 3-D (Crosbie/Schrenker, 
cause its variables -- for example, reflection ma- 1982; Kimes/Kirchner, 1982; Du/Liou, 1982) radia- 
trices -- had simple, direct physical interpretations. tive transfer, for dealing with horizontal inhomo- 
Liou revived Chandrasekhar's discrete ordinates geneity. And I would emphasize that I am not just 
method in 1973, but because it also experienced nu- thinking of finite clouds; other quantities, like 
merical ill-conditioning (in computing eigenvalues), aerosol, surface albedo, even temperature, some- 
and because the physical interpretation was more times have sharp horizontal gradients as well. 
obscure, it was not widely adopted. Its defects, Another area needing further elaboration is spec- 
also, have only been remedied recently (Stamnes/ tral integration across a band of absorbing lines. 
Swanson, 1981; Stamnes/Dale, 1982). The two seemingly distinct methods for doing this-- 

In order to obtain intensities which vary smooth- exponential fitting (Wiscombe/Evans, 1977; Evans 
ly in angle, Davies (1980), Karp (1981), and Stamnes et. al., 1980; Chou/Arking, 1981) and photon path 
(1982) all recommend the old trick of iterating 
the source function. Davies gets the source func- 
tion just from the delta-Eddington approximation, 
and, considering that delta-Eddington was only de- 
signed to give accurate fluxes, obtains remarkable 
accuracy in computed intensity (better than 10%). 

Various techniques were put forward (Wiscombe, 
1976a; Twomey, 1979; Cogley/Bergstrom, 1979) for 
including thermal emission in scattering calcula- 
tions. More important than the techniques thmn- 
selves, was what they signalled: that we were no 
longer going to let the IR be the province of pure 
absorption. We wanted to know how scattering me- 
dia like aerosols and clouds behaved in the IR0 

When I first went to NCAR, I met a solar physi- 
cist who crowed about how advanced the astrophy- 
sical radiative transfer techniques were, com- 

pared to my own humble fumblings. Nevertheless, 
as they stood, his techniques were ill-suited to 
atmospheric problems. Barkstrom (1976) has taken 
the best of the astrophysical ideas and developed 
a technique which i__s suited to the atmosphere. It 
is numerically stable and particularly useful for 
strong spatial inhomogeneity. 

Lenoble (1977) performed an exceptional service 
by undertaking an intercomparison of many exact and 

distribution -- were shown to be essentially the 
same by Bakan (1978). Mostly, the pressure scal- 
ing approximation is used for dealing with inhomo- 
geneous paths, and Chou/Arking have shown how to 
make the very best possible scaling approximation, 
rather than just using fixed powers of pressure and 
temperature the way LOWTRAN does. Still, there is 
much about these methods we do not under- 
stand: their error compared to line-by-line cal- 
culations, their suitability for very broad spec- 
tral intervals, the limits beyond which they can- 
not be pushed. 

In closing, I am happy to announce that multi- 
ple scattering theory has been experimentally con- 
firmed (.graber/Cohen, 1975) ! 

Measurement 

Until recently, radiation measurements could only 
be relied on to a few percent. Even international 
standards disagreed until the late 1960's. That 
is why I am particularly impressed by the cavity 
radiometers of Hickey (1980, 1982) and Willson 
(1981) on Nimbus 7 and the Solar Maximum Mission 
respectively. These measured the solar 'constant' 
variation to 0.1% or so, and incidentally found the 

approximate methods for 5 standard problems. I and sun to be flickering at the 0.3% level over periods 
many others submitted results to this 'competition', as short as 30 days! This is an impressive achieve- 
and for the first time we could all see that we were ment, especially in the harsh environment of space, 
calculating fluxes accurately to about 3 significant where instruments notoriously degrade. Their work 
digits, and intensities to 2 (except for the Monte 
Carlo methods). This seems sufficient for atmos- 
pheric work. 

We have seen really important breakthroughs in 
simple approximations for highly anisotropic phase 
functions. It began with the extended two-stream 
(Coakley/Chylek, 1975) and delta-Eddington (Joseph 
et. al., 1976) methods and more or less culminated 
in the unifying analyses of Meador/Weaver (1980) 

has allowed climate modelers to get on with more 
pressing problems without worrying, but not knowing, 
how the Sun was changing. (Hoyt (1979) has also re- 
viewed Abbott's old work on solar flickering.) 

The 1970's can truly be said to be the decade 
when atmospheric scientists, like astronomers, be- 
gan using almost the whole electromagnetic spectrum. 
The Backscattered UltraViolet (BUV) Experiment 
probed the stratosphere from space. Visible imagery 

and Zdunkowski et. al. (1980). Two important pur- made great strides; Landsat enables us to examine 
poses were served: first, simplification, which of- individual puffy Cu with 80-m resolution, and it is 
ten leads to better understanding; and second, pro- said that DoD satellites can see a tank on the groun• 
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Near-IR channels were added on NOAA and DMSP satel- 

lites for snow-cloud discrimination. Clusters of 
4- and 15-micron channels were used to retrieve 

t•nperatures and humidities. METEOSAT brought us 
our first moving pictures of the upper atmosphere 
at 6 microns. Microwaves, originally used just 
for sensing sea ice, now bring us liquid water, 
precipitation, soil moisture and snow measure- 
ments. And SEASAT carried side-looking radar to 
profile the sea surface (Lipes, 1982). These are 
but a sample of the achievements. 

Many of these same wavelengths are also being 
used for surface-,and aircraft-based measurements 

of: temperature (Murray, 1980), clouds, humidity 
(Buck, 1976), trace-gas concentrations, sensible 
and latent heat flux, rain (Wang, 1980), wind (Eber- 
hard/Schotland, 1980), divergence, turbulence, pre- 
sure (Gardner, 1979),aerosols, and PBL height. And 
they are often giving values averaged over space, 
helping to eliminate meteorology's age-old prob- 
lem of trying to depict spatially ragged fields 
with point measur•nents. Atlas and Korb (1981) 
predict the ultimate replacement of the $1 billion 
surface network with "a composite of passive and 
active sensors in the visible, IR, and microwave." 

The number of clever ways in which lasers are 
being used is awe-inspiring (Grams, 1978; Russell 
et. al., 1982). From the original few fixed wave- 
lengths, a wide spectrum (literally) of possibili- 
ties has evolved. Some lasers are even tuneable, 
witkin limits! Besides the original 'monostatic' 
configuration, where laser and receiver coincide, 
new bistatic and even tristatic arrangements are 
being pioneered (Abreu, 1981). Dual-wavelength 
(DIAL) setups have been developed near the oxygen 
band at 0.76 microns and elsewhere (Browell, 1979), 
which offer particular promise for space-based re- 
mote sensing. And Raman scattering, at a wave- 
length slightly displaced from that of the laser 
itself, while too weak for distant detection, is 
an id, eal way of fingerprinting many trace gases 
(Petri, 1982). (Applied Optics has become the fo- 
cal point for most of this literature.) 

Doppler radar has apparently been a quantum 
leap forward in'the detailed mapping of storms. 
Knollenberg optical probes are working a similar 
revolution in cloud physics, allowing vast amounts 
of droplet and ice particle size and shape informa- 
tion to be collected automatically, rather than by 
the painstaking manual methods of the past. 

I was particularly taken with the 'bugeye' in- 
strument (Davis/Cox, 1981, 1982) for snapshotting 
the intensity field in 12 solid angles simultaneous- 
ly. The bug eye was used extensively in MONEX to 
develop typical models of cloud and surface angular 
scattering. It avoids cosine reponse problems and, 
because of the simultaneity, is ideally suited to 
aircraft and satellite platforms. 

Many of the original satellite instruments were 
merely imagers. It was almost impossible to cali- 
brate their shades-of-grey into radiometric units. 
That is changing now. For one thing, there are 
more shades available, as 6-bit data is replaced 
by 8- and even 10-bit words. And several groups 
have calibrated GOES, LaDJJat, and METEOSAT against 
aircraft, surface, and other satellite measurements 
(Kriebel, 1981; Duggin, 1981; Koepke, 1982; Beriot, 
1982). The trend away from mere pictures and to- 
ward quantitative radiation measurements is a 
healthy one. 

High on the list of remaining problems is to take 
lots more spectrally detailed measurements, from all 
platforms. The ones from Nimbus 3 and 4 were tre- 
mendously exciting, and were crucial in validating 
the Ellingson/Gille (1978) longwave model. Similarly, 
spectrally-detailed measur•nents of snow albedo 
(O'Brien/Munis, 1975) were vital in the inference 
of soot in snow (Warren/Wiscombe, 1980). There is 
much, much more to be learned in the spectral de- 
tail. 

Improved measurement accuracy is going to be vital 
in the future. The present 1-3% is not going to be 
sufficient for examining subtler radiative effects 
in the atmosphere. Already, for cloud absorption, 
some deduced values come out negative due to cancel- 
lation of all significant digits in differencing the 
measur•nents. Perhaps some entirely new technology 
is needed; perhaps the old type of radiometer is in- 
herently imperfectible. Those radiometers convert 
radiation into temperature changes. What we should 
be looking for is other, more accurately measurable 
material properties into which the radiation can be 
c onver ted. 

Surface Reflectivity 

There have been several new compilations of sur- 
face albedo for the entire Earth (Robock, 1980; Kukla/ 
Robinson, 1979; Hummel/Reck, 1979). This is much to 
be applauded, since for years almost everyone used 
the same one or two data sets, and there was a false 
sense of security that we really understood surface 
albedo. The three new data sets exhibit significant 
differences, which more accurately reflects our un- 
c er tainty. 

We have learned that desert albedos can be as high 
as 40-50%, and that they reflect more in the near-IR 
than in the visible (Rockwood/Cox, 1978; E. Smith, 
1981). This causes 'heat lows' over most deserts; 
they reflect away so much solar, and emit so much 
longwave, that they actually suffer a radiation 
deficit. High desert albedos were adduced as a caus- 
ative factor in the Sahelian drought (Berkovsky, 1976; 
Charhey et. al., 1977; Norton, 1979). Cess (1978) al- 
so examined surface albedo as a climatic feedback 

mechanism, but in connection with the biota, and on 
Ice-Age time scales. 

Models of some types of surface albedo have con- 
tinued to improve. They all treat the surface as 
an absorbing-scattering medium. Application was 
made to dusty surfaces (Egan/Hilgeman, 1978) and 
to pure snow (Wiscombe/Warren, 1980), among others. 

Much more needs to be learned about the spec- 
tral and angular variation of natural reflectivi- 
ties. Models indicate that the usual deviations 

from isotropic reflection can be important (Fitch, 
1981). The effect of surface roughness needs to 
be better known, from the scale of capillary waves 
on the ocean (Sidran, 1981), to forest canopies 
(where the leaves are scattering 'particles', see 
Cooper, 1982), to mountain ranges. Theoretical mod- 
eling of shadowing and multiple scattering among 
surface 'facets', to say nothing of light upwell- 
ing from below in the case of snow,sea ice, forest 
and ocean, is not very advanced (e.g. Choudhury 
1979). Carroll (1982) has made some progress with 
a triangular-waveform model of snow-surface rough- 
ness. The electrical engineers have developed very 
sophisticated surface-roughness theories over the 
years (Beckmann/Spizzichino, 1963), but for per- 
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fectly-conducting surfaces; these are of some, 
but not much help. 

Odds and Ends 

"No one wants their field parameterized" -- so 
said an oceanographer at a recent meeting. This 
seemed like a reasonable sentiment at the time; over- 
simplification can offend one's sense of the elegance 
and subtlety of one's field. Yet radiation scien- 
tists have developed many parameterizations (Lacis/ 
Hansen, 1974; Stephens, 1978b; Chylek, 1978; Liou/ 
Wittman, 1979; Leighton, 1980; Twomey/Bohren, 1980; 
Thompson/Warren, 1980), mostly for the IR and for 
clouds. Why are we so willing to parameterize? 

Upon reflection, it became clear that the reason 
is: we recognize the importance of interfacing 
with other fields. In order to do so, we must 
simplify our subject to the bare bones, so that it 
may run fast on a computer, or be no more complex 

gone are the days when a scientist waited to pub- 
lish until he had something important to say. Now, 
many articles and reports are little more than our 
version of time cards. 

Too many of us are shotgunning the literature, 
perhaps in search of lax editorial standards. But 
getting an article published in some outlying jour- 
nal seems a Pyrrhic victory, at best. We should 
rather concentrate our papers in the main outlets 
for atmospheric radiation research -- JAS, JAM, 
Applied Optics, JQSRT, and QJRMS (everyone wants 
to publish at least once in QJRMS; such is its 
cachet). Only by doing so do we have a•y •ha•e at 
all of keeping abreast of one another's work. 

It is always a pleasure to welcome new books in- 
to our field. Among many, I might mention Liou 
(1980), our first advanced textbook on atmospheric 
radiation; Paltridge/Platt (1976), with more em- 
phasis on IR radiation, dynamics, and climate 
than Liou; Twomey (1977), on the mathematics of 

than other pieces in a large model, or be useful r•note sensing; Slater (1980), on remote sensing 
for back-of-the-envelope estimates in a classroom or instrumentation; and McCartney (1975), suitable for 
a field experiment. And we prefer to do this simpli- an introductory course, with more material on cloud 
fication ourselves, as the ones best qualified. This and aerosol microphysics than the others. 
signifies a certain Whole-Earth view, a sense of con- Strangers in a Strange Land 
nection with other fields, which is still lacking in 
oceanography. 

An important advance in our field has been the 
achievement of a unified treatment of shortwave and 

longwave problems. Even through the 1960's, short- 
wave and longwave experts kept to their own turf. 
Their methods were entirely distinct. But when I 
began building the ATRAD model in 1970 (Wiscombe, 
1975), I was unaware of these distinctions. Using 
exponential fits and LOWTRAN, I developed a 
methodology which was the same in all spectral re- 
gions -- even the microwave. This kind of unifi- 
cation has continued to the point where most of 
the younger radiation scientists are able to work 
in any region of the electromagnetic spectrum. 

This is absolutely necessary nowadays. Climate 
problems involving cloud or stratospheric ozone 
changes lead to compensatory changes in shortwave 
and longwave fluxes; you cannot just look at one 
or the other. Carlson/Benjamin (1980) found that, 
as the amount of Sahara dust over the GATE area 

increased, there were big changes in both the 
shortwave and longwave fluxes to space -- which can- 
celled almost perfectly! And most remote sensing 
will be done, in the future, with multi-spectral 
strategies. 

It struck me forcefully, in assembling the Bib- 
liography, that, compared to European scientists, 
we in the U.S. are much more enamoured of models. 

As a result, I see rather an unhealthy imbalance 
between theory and experiment. It is true that li- 
dar is a beehive of activity, but not everything 
can be measured with lidar. Many experimentalists 
have expressed discouragement that, while theore- 
ticians grind out papers at a furious pace, their 
work necessarily is much slower to appear, making 
them seem unproductive. If it is true that we 
have come to place a higher value on theor:etical 
than on experimental work, then certainly we, as 
scientists, have completely lost touch with our 
roots. 

The publication glut in our field has become 
absolutely unbearable. A few of us, in satellite 
radiation, do not publish enough, at least in the 
archival literature. But for too many others, 

Many radiation scientists feel, upon picking up 
atmospheric science literature, like scientists in 
general feel when they first pick up Science maga- 
zine. The title does not prepare them for the 
narrow focus, which in atmospheric science is dy- 
namics (and in Science is biology). Shibboleths 
like 'baroclinic instability', 'potential vorti- 
city', and 'primitive equations' seem to fill the 
literature, and often there is nary a photon to be 
found anywhere. Hence the title of this section. 

Until about 1968, when the climate revolution 
struck, there were really very few atmospheric ra- 
diation scientists. They could all have met in a 
small room. But already by 1972, when Tom Vonder 
Haar inaugurated the U.S. national radiation meet- 
ing, a very large room was needed. For the fifth 
such meeting, next fall in Baltimore, we have re- 
ceived over 150 abstracts. Thus we are now a sub- 

stantial component within atmospheric science, al- 
though our growth has pretty much leveled out of 
late. 

But our prestige has not grown with our numbers. 
There are prevailing attitudes that only dynamics 
problems are (a) really difficult, or (b) worthy of 
.an atmospheric scientist's attention. The first 
seems especially strange to many of us, who mi- 
grated into atmospheric science from physics, 
mathematics, and engineering, where standards of dif- 
ficulty are highly developed. Dynamics problems do 
not seem any more or less difficult than radiation 
problems to us, their vector analytic formulation 
notwithstanding; they are merely different. I,for 
one, have my Ph.D, in fluid dynamics, but I have al- 
ways found radiation problems more challenging and 
more interesting. 

And as to what is worthy of an atmospheric sci- 
entist's attention, that depends on your perspec- 
tive. Agreed, if you want to forecast mid-latitude 
cyclones, you had better pay close attention to your 
dynamics. Radiation, slow albeit inexorable in its 
effects, can safely be neglected. Indeed, as the 
April 1, 1983 issue of Science announced, the NMC 
forecast model "cranks out weather in perpetual 
d ar kne s s." 
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But the matter is entirely otherwise if your focus 
is climate; or polar meteorology; or tropical meteor- 
ology; or the stratosphere; or long-lived stratiform 
clouds; or anywhere where fast-breaking bareclinic 
waves do not grab all the headlines. In these areas, 
radiation is either important, or very important. 
Many of us work in these areas; and we think they 
are just as deserving of respect as short-term mid- 
latitude dynamics. 

Most of the rest of us work in remote sensing. 
Just as the 1970's was the ':•Uecade of Climate," 
so, I believe, the 1980's and 1990's will be the 
"Decades of Remote Sensing." It is the only way 
out of the overwhelming data-dearth dilen•na. But 
for years remote sensing researchers have com- 

plained that they are treated like servants in the 
house of atmospheric science -- like mere purvey- 
ors of an engineering product. They would like it 
known, as would I, that remote sensing is a first 
class theoretical and experimental problem, every 
bit as deserving of respect as bareclinic wave 
studies. 

It would seem only prudent for atmospheric sci- 
ence as a whole to open its doors and grant full 
citizenship to those of us in radiation, climate, 
and remote sensing. We are, after all, carrying 
some of the torches which will light the way into 
her future. And we have no desire whatsoever to 

remain 'Strangers in a strange land.' 

Bib liogr aphy 

The bibliography herewith consists of some 1300 
items, arranged in groups more or less correspond- 
ing to the section headings in the review. Re- 
striction even to this large size was only possi- 
ble by insisting that: (a) a paper had to have 
radiation as its main focus (although I have 
seeded some papers about using radiation to mea- 

sure other atmospheric variables); (b) it had to 
be in JAS, JAM, MWR, Bull. of the AMS, QJRMS, Appl. 
Opt., JOSA, JQSRT, or Tellus. Fields like lidar, 
radar, inversion techniques, etc. are merely 
skimmed. Each now warrants its own large biblio- 
graphy. Including them would make the reviewer's 
task not merely daunting, but impossible (unless, 

of course, AGU wants to create full-time reviewing 
positions). I direct your attention particularly 
to the 'Miscellaneous' category. Therein may lie 
the spores of some of the future 'hot' problems 
we will be dealing with. 
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Introduction 

Dynamic meteorology is the study of atmospheric 
motions associated with weather and climate. 

Traditionally dynamical meteorologists have 
emphasized motions of synoptic and planetary 
scale. During the past four years there have 
been a number of exciting developments in the 
dynamics of synoptic and plantary scale motions. 
b•ny of these are related to various aspects of 
short term atmospheric variability both 
internally and externally generated. A number of 
studies have gone beyond the traditional 
perturbation approach in which disturbances are 
imposed on a zonally symmetric basic state. 
Significant progress has been made in 
understanding the dynamics of the quasistationary 
zonally asymmetric flow and its control o• the 
transient circulations. 

In this review we focus on the progress made 
in the understanding of synoptic and planetary 
scale motions in the troposphere. Although many 
important advances have been made in 
stratospheric dynamics, that area is covered in 
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another review (Hartmann, 1983) thus, 
stratospheric problems will be considered here 
only in terms of the links between the 
stratosphere and the troposphere. 

Linear Instability Studies 

The study of baroclinically unstable flows 
remains a central theme of theoretical dynamics. 
In recent years the stability of realistic mean 
zonal flow profiles with both latitudinal and 
vertical mean wind variations has been studied 

using both initial value and eigenvalue 
techniques. An important conclusion of these 
studies is that planetary scale (wavenumber 1-3) 
disturbances can De baroclinically unstable in 
the presence of realistic wind profiles on the 
sphere, and that such modes can have very large 
vertical scale and, hence, may account for the 
observed transient eastward propagating long 
waves of the Southern Hemisphere winter 
stratosphere. (ltartmann, 1979; Straus, 1981). It 
has been shown that the discrepency between these 
results and earlier beta-plane idealizations is a 
consequence of the specification of fixed 
meridionai scales in the beta-plane models 
(Hoskins and Kevell, 1981). 

At the other end of the spectrum of baroclinic 
instability, progress has been made in 


